Xtrabackup 을 활용한 Replication 설정

Xtrabackup 을 이용한 Slave 추가 하기.

Master 에 Slave 를 추가해야 하는데, Online 상황에서 추가하기는 쉽지가 않다. 대부분 mysldump 를 이용해서 추가 하는 방법이나, mysql data 디렉토리를 압축해서 해제하는 방법을 쓰거나 둘중 하나이다.

하지만 이렇게하면 Online 상태를 유지할 수 없다. Online 상태를 유지면서 Master 의 데이터를 옮기는 방법으로는 Xtrabackup 을 이용하는게 제일 좋다.

먼저, Xtrabackup 툴을 Master 와 Slave 서버에 모두 설치해 준다. 그리고 Master 서버에 다음과 같이 백업을 위한 계정을 생성한다.

그리고 두가지를 생각해봐야 한다. 먼저 새롭게 준비된 Slave 에서 Master 에서 데이터를 땡겨올건지 아니면 Master 에서 Slave 로 쏴줄 것인지이다.

새로운 Slave -> Master 로 접속해서 데이터를 끌어오는 방법은 다음과 같다.

Master -> Slave 로 데이터를 쏴줄때는 다음과 같이 한다.

쏴줄때에 위와같이 하면 백업 진행중에 ssh 접속 패스워드 입력하라는 프롬프트가 나오고 지나가버립니다. 그래도 패스워드를 입력하면 됩니다.

백업 완료되면 디렉토리에 xtrabackup_binlog_info 파일 생성되고 다음과 같은 내용이 포함된다.

이 내용을 기반으로 Replication 을 할때에 활용한다.

데이터를 다 끌어오는 동안에 변경된 데이터를 적용해야하는데, 다음과 같이 한다.

그리고 다음과 같이 복원을 시행한다.

그리고 다음과 같이 리플리케이션을 걸어준다.

 

Database 를 위한 공유 메모리, HugePages 계산하기

Database 시스템은 공유메모리 혹은 HugePages 에 매우 의존적입니다. 서버에서 데이터베이스가 가동되면 Database 가 사용하는 메모리는 Database만을 위해서 사용되어 집니다. 대부분의 큰 Database 시스템은 다른 서버 프로그램 없이 단독으로 설치되어 운영되어지기 때문에 얼마만큼 물리적 메모리를 Database 에 할당할지가 Database 시스템 전체에 큰 영향을 미칩니다.

이 글에서 Database 시스템을 위한 공유메모리, HugePages 등을 할당할때에 고려사항은 무엇이며 얼마나 할당하는 것이 좋은지를 살펴보겠습니다.

Oracle 11g or 12c

먼저 Oracle 은 물리적 메모리에 약 80% 를 Oracle 이 사용하도록 할당하도록 합니다. 여기서 대략 80% 라고 했는데, 만일 몇가지 프로그램을 함께 돌린다면 약 75% 가 적당합니다.

물리 메모리의 약 80% 할당

여기서 고려해야할 사항이 하나 있습니다. 80%를 할당하라고 해서 무조건 80%를 할당하게 되면 문제가 됩니다. 예를들어 16GB 의 물리 메모리로 운영하는 경우에 80%면 12.8GB 이고 서버에서 사용가능한 용량은 3.2GB 입니다. 요새 데스크탑 컴퓨터도 안되도 4GB 는 사용하는데 아무리 가벼운(?) 리눅스 서버라도 3.2GB 는 운영하는데 너무 적어 보입니다.

이럴때는 운영체제에서 사용할 최소 메모리를 남겨두고 나머지를 Oracle 에 할당하는게 현명하다고 할 수 있습니다.

또하나 중요하게 고려해야할 사항은 Oracle 에서 AMM을 쓰느냐 안쓰느냐 하는 문제 입니다. 이 둘의 차이는 다음과 같습니다.

AMM 을 사용할 경우: /dev/shm 장치를 이용한 공유메모리 모델 사용. HugePages 사용 불가

AMM을 사용하지 않을 경우: System V 공유 메모리 모델 사용. HugePages 사용 가능

 

Oracle 11g 버전으로 넘어오면서 전에 없던 기능이 하나 생겼는데, 그것은 바로 AMM(Aotomactic Memory Management) 입니다. AMM은 Oracle의 메모리 모델인 SGA와 PGA 를 통틀어서 메모리 관리를 자동으로 해준다는 개념입니다.

AMM 기능을 이용하면 대략적으로 SGA 영역은 Oracle 할당받은 메모리 영역에서 85%, PGA 는 약 15%로 나눠서 관리한다고 합니다.

또 한가지 AMM의 특징이 있는데, 공유메모리 모델중에서 /dev/shm 장치를 이용한 Posix 규격의 공유메모리 모델을 사용한다고 합니다. 이 메모리 모델은 메모리 가상 장치를 통해서 프로세스가 공유할 내용을 파일로 저장해서 공유하는 방법으로 오로지 용량에만 제약사항이 있습니다. 공유할 내용을 파일로 생성할때에 얼마만한 크기로 생성할지는 전적으로 서버 프로그램, 여기서는 Oracle, 에 의해서 결정됩니다. 최근의 모든 리눅스 서버는 /dev/shm 이 자동으로 마운트되어 있으며 기본적으로 전체 물리메모리의 50%를 사용합니다.

용량을 바꾸기 위해서는 다음과 같이 해줍니다. CentOS 6과 CentOS 7 배포판 별로 차이가 조금 있습니다.

 

만일 AMM을 사용하지 않을 경우에는 SystemV 의 공유메모리 설정을 따르게 됩니다. 이때에 HugePages 도 함께 사용할 수 있습니다. 이 설정들은 커널 파라메터로 조정하며 그 설정 변수는 다음과 같습니다.

shmmax: 단일 프로세스가 공유메모리를 호출하기 위한 최대 값. 단위 Bytes

shmall: 시스템을 통틀어 사용가능한 공유 메모리 Page 량. 단위 Page

nr_hugepages: Huge 페이지 개수.

 

여기서 중요한 것이 만일 HugePages 를 사용한다면 shmall 은 사용되지 않습니다. shmall 은 리눅스 메모리의 기본단위인 4096bytes(4k) 를 기반으로 계산되어 지는데, HugPages 는 이보다 더 큰 2048k(2MB) 를 기반으로 페이지를 나누기 때문입니다.

어찌됐든 이런 모든 상황을 고려해서 사용가능한 메모리를 구한다면 다음과 같은 공식으로 구할 수 있습니다.

보시면 아시겠지만 다른분이 만들어놓은 것으로 최소 500MB 용량을 넘는 것으로해서 shmmax, shmall, hugepages 를 모두 계산하고 있습니다.

MySQL 5.x

MySQL 의 경우에, InnoDB 엔진만을 사용한다는 전제하에, 전체 메모리의 80%를 MySQL이 할당해서 사용하도록 설정합니다.

물리 메모리의 약 80%를 MySQL에 할당(InnoDB만 사용)

MySQL 은 오로지 SystemV 의 공유메모리 모델을 따릅니다. 따라서 HugePages 를 사용할 수 있는데, 이를 위해서는 다음과 같이 my.cnf 에 설정을 해줘야 합니다.

그리고 shmmax,shmall,nr_hugepages 는 앞에 스크립트를 이용해서 구합니다.

Linux 설정

SystemV 공유 메모리 모델의 경우에 몇가지를 더 해줘야 합니다.

첫째로 Transparent Huge Pages (THP) 설정을 꺼야 합니다. 성능저하가 발생한다고 하네요. 다음과 같이 간단히 처리 할 수 있습니다.

매번 부팅시마다 자동으로 설정하고 싶다면 부팅 파라메터를 수정해 줍니다.

Ubuntu 의 경우에는 다음과 같이 해줍니다.

CentOS 의 경우에는 다음과 같이 해줍니다.

확인도 가능한데, 다음과 같이 AnonHugePages 값이 0Kb 명 THP 가 비활성화 된 것입니다.

마지막으로 커널이 HugePage 를 사용할 그룹이 누군지를 지정해 줍니다.

위와같이 리눅스 시스템 사용자의 그룹ID 를 알아내도록 명령어를 입력할 수도 있고 아니면 그냥 그룹ID를 찾아서 적어줘도 됩니다.

Telegraf 설치 및 설정

Telegraf 는 서버내의 각종 지표들을 수집하는 에이전트(Agent) 프로그램 입니다. 서버 자체뿐만 아니라 각종 서버소프트웨어들에 지표도 함께 수집할 수 있으며 InfluxDB, OpenTSDB, Kafka 등과 같은 데이터소스(Datasource)에 저장하도록 할 수 있습니다.

환경

설치 및 설정 환경은 다음과 같습니다.

  • CentOS x86_64

설치

설치는 Telegraf 홈페이지에서 관련 파일을 다운로드 받으면 됩니다. Telegraf 는 배포판별로 패키지를 제공하기 때문에 편하게 설치를 할 수 있습니다.

 

설정

설정은 /etc/telegraf/telegraf.conf 파일에서 해주시면 되며, 주요 설정은 다음과 같습니다.

위 설정만으로도 주요한 Linux 시스템의 지표들을 수집할 수 있습니다. 설정을 다 했다면 다음과 같이 시작해 줍니다.

 

InfluxDB 설치 및 설정

InfluxDB 는 Time Series Database 로 각광을 받는 데이터베이스 시스템입니다. SQL 로 데이터 조회가 가능하며 Retention 설정(보유기간을 설정) 할 수 있는 특징이 있습니다.

환경

설치 환경은 다음과 같습니다.

  • CentOS x86_64

설치

다음의 페이지에서 다운로드를 받을 수 있습니다.

InfluxDB 는 각 배포판별로 패키지를 제공 합니다. 패키지를 이용하면 손쉽게 설치할 수 있고 init script 등록도 자동으로 되기 때문에 패키지 설치를 권장 합니다.

설치가 끝나면 다음과 같은 파일들을 확인할 수 있습니다.

설정

대부분의 설정은 /etc/influxdb/influxdb.conf 파일에서 이루어 집니다.  주요한 설정은 다음과 같습니다.

대략 위와같이 설정한 후에 InfluxDB 를 시작해 줍니다.

 

Database 설정

앞에서의 설정은 InfluxDB 시스템에 대한 설정이라면 이번 Database 설정은 Time Series 데이터를 위한 접근 제어, 데이터베이스 생성등에 관한 것입니다.

먼저, 전체 Database 에 최고 관리자를 생성해야 합니다. 최고 관리자는 모든 데이터베이스에 대해서 READ, WRITE 권한을 가집니다.

Ctl+D 를 누르고 나온후에 이번에는 관리자 권한을 얻기 위해서 인증 로그인을 합니다.

위와같이 관리자 인증을 통해서 내부 데이터베이스인 _internal 에 접근이 가능하며, 현재 인증된 사용자가 어떤 권한을 가지고 있는지도 살펴볼수 있습니다.

데이터베이스 및 일반 사용자 생성

이제 데이터 수집을 위한 데이터베이스와 이 데이터베이스에 접근하기 위한 일반 사용자 생성을 해보겠습니다.

먼저 데이터베이스 systemv 를 생성하고 일반 사용자인 voyager 도 생성합니다. 그리고 systemv 데이터베이스에 voyager 사용자에게 모든 권한을 부여 합니다. 이렇게 되면 voyager 사용자는 systemv 데이터베이스에만 접근이 가능한 일반 사용자가 됩니다.

이제 외부 수집서버에서 InfluxDB 로 접근할때에 일반사용자인 voyager 로 인증하고 systemv 데이터베이스에 데이터를 저장할 수 있습니다.

Oracle 12c 데이터베이스 삭제하기

Oracle 12c 데이터베이스 삭제하기 위해서는 다음과 같이 하면 된다.

x86_64 시스템에서 4MB 크기 HugePageSize 변경 불가.

HugePage 는 Linux 의 기본 메모리 페이지 크기인 4K(4096) 가 아닌 더 큰 페이지를 사용하도록함으로서 잦은 메모리 액세스를 줄여 자원 소모를 줄이게 해준다.

최신의 Linux 는 전부 이것을 지원하며 다음과 같이 확인 할 수 있다.

기본 메모리 페이지는 Hugepagesize 인 2MB(2048kb) 임을 확인할 수 있다.

그런데, 이 메모리 페이지 크기를 바꿀 수 있지 않을까? 결론부터 말하면 불가능하다.

이 Hugepagesize 는 CPU 지원에 의존한다.

  • 2MB – cpu에 ‘pse’ 가 지원되면 된다.
  • 1G – cpu 가 ‘pdpe1gb’ 가 지원되면 된다.

최신의 CPU 는 위 두가지 ‘pse’, ‘pdpe1gb’ 를 모두 지원한다. 1GB 의 메모리 페이지를 지원한다. 하지만 4MB 의 메모리 페이지를 지원하지 않는다. 그렇다면 왜 이 글을 쓰는가? 이유는 MySQL 문서 때문이다.

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

https://dev.mysql.com/doc/refman/5.7/en/large-page-support.html

MySQL 문서를 보면 위와 같이 4096Kb 라고 나온다. 하지만 x86_64 시스템에서는 절대로 4096kb 가 될수가 없다. 2MB 아니면 1GB 만 가능하다.

혹시나 해서 이것을 바꾸기 위해서 다음과 같이 부팅 파라메터를 주고 재부팅을 해뒀다.

하지만 부팅 메시지에 다음과 같이 나온다.

지원하지 않는다는 메시지를 보여준다.

결론은 Hugepagesize 는 CPU 에서 지원해줘야 하는 것이며 최신의 x86_64 의 경우 2MB, 1GB 두가지만 지원한다.

Linux PAGE_SIZE 그리고 HugePage

다음의 글이 도움이 될 듯 싶다.

Kernel hugepages does not alter the calculation of SHMMAX, which you need to set large enough to fit your largest Oracle SGA. SHMMAX applies to SYS V shared memory, which can be hugepages or use conventional 4K memory pages. SHMMAX is not relevant when you use /dev/shm POSIX shared memory (Oracle AMM).


The Oracle database requires shared memory for the SGA. This can be Sys V (IPC) or POSIX /dev/shm.


Shared memory and semaphores, and the SHM kernel parameters, belong to System V IPC, which can be monitored using the ipcs command. Sys V shared memory can be configured to be 2 MB kernel hugepages, or use the default 4 KB memory pages. Kernel hugepages can drastically reduce the memory requirements for managing required memory pages and make better use of the TLB buffer.


The SHMMAX parameter is used to define the maximum size (in bytes) for a shared memory segment and should be set large enough for the largest SGA size. If the SHMMAX is set incorrectly, for example too low, you may receive the following error: ORA-27123: unable to attach to shared memory segment.


SHMMAX for a server that runs Oracle database is typically set to 4 TB or whatever the platform being x86 or x64 theoretically supports. The parameter is a safeguard parameter. A process cannot use more shared memory than available. Obviously this is not considered a risk when using a dedicated server for running Oracle database.


POSIX shared memory maps shared memory to files using a virtual shared memory filesystem in RAM. It uses /dev/shm and applies when configuring the Oracle database to use Automatic Memory Management (AMM). An Oracle instance can use either Sys V shared memory including kernel hugepages or /dev/shm for SGA, but not both at the same time. You can however use different shared memory concepts for different Oracle instances on the same server. For example, running an +ASM instance using AMM and another Oracle database instance using ASMM.

https://community.oracle.com/thread/3828422

/dev/shm 공유메모리 설정.

Oracle 12c 에서 메모리의 사용을 어떻게 할 것인가에 따라서 다음 두가지로 나뉜다.

  • AMM
  • ASMM

AMM을 사용할 경우에 init.ora 시작 파일에 MEMORY_TARGET, MEMORY_MAX_TARGET 의 값을 사용하며 ASMM 의 경우에는 SGA_TARGET, SGA_MAX_TARGET 값을 사용한다.

AMM은 SGA, PGA 내의 각종 메모리 구역을 사용하는 목적에 따라서 자동으로 조절해 항상 최대의 성능을 내도록 해준다. 이는 Oracle 11g 에서 소개된 것으로 Oracle 은 이를 적극 사용할 것을 권하고 있다. 하지만 한가지 문제가 있는데, Linux 시스템의 경우에 HugePageSize 를 사용할 수 없다.

ASMM은 SGA 만 자동으로 메모리를 관리해준다. PGA는 자동으로 해주지 않으며 이는 상황에 맞게 normal한 값을 주어야 하며 잘못 설정할 경우에 성능에 심각한 영향을 줄 수 있다. 하지만 Linux 시스템의 경우에 HugePageSize 를 사용할 수 있다.

AMM을 사용할 경우에 초점을 맞춰, 메모리 용량을 설정할 때에 Linux 시스템에 tmpfs 으로 마운트된 /dev/shm 에 Oracle 에서 사용할 메모리양 만큼 마운트를 해줘야 한다.

/dev/shm 는 다음과 같은 모습을 보인다.

/dev/shm 는 기본적으로 마운팅이 되는데, 이는 전체 물리메모리의 절반이 기본으로 된다.

왜 /dev/shm 의 크기가 중요한가?

이유는 간단하다. 이 크기만큼만 Oracle 이 사용할 수 있다. 정확하게는 AMM 기능을 사용할때에만 해당된다. 예를들어, init.ora 에 다음과 같이 /dev/shm 의 값보다 크게 설정했다고 치자.

/dev/shm 크기는 현재 4G 이다. 이 상태에서 Oracle 를 시작하면 다음과 같은 오류가 난다.

그렇다면 /dev/shm 값을 변경해줘야 한다. 어떻게 할까?

먼저, /etc/fstab 을 다음과 같이 변경한다.

그리고 /etc/fstab 를 기반으로 마운트를 전부 재마운트 하도록 한다.

위와같이 조정을 한 후에 init.ora 의 MEMORY_TARGET 를 4G 로 지정해도 정상적으로 동작하게된다.

ps, /etc/fstab 를 조작하지 않고 다음과 같이 수동으로 할 수 있다. 먼저 umount 를 다음과 같이 해준다.

그리고 다음과 같이 크기를 지정해 마운트 해주면 된다.

 

ps, 좀 더 정확하게 말하자면 /dev/shm 은 Virtual Shared Memory Filesystem 이다. Linux 는 공유 메모리를 위한 인프라가 다양한데, 그중에 하나가 파일시스템(Filesystem) 을 이용하는 것이다.

파일시스템에 데이터를 기록하면 여러 프로세스가 액세스를 할 수 있어 손쉽게 공유메모리 기능을 구현할 수 있다. 이것은 POSIX 에서 마련한 공유메모리 기법으로 보통 POSIX 공유메모리 인프라로 불리운다. 그것을 위해서 물리적 메모리의 일부를 Virtual Shared Memory Filesystem 으로 사용하는데, Linux 는 물리적 메모리의 50%를 /dev/shm 에 할당 한다.

Linux 에서 기본은 System V IPC 로 이는 커널파라메터 vm.shmmax, vm.shmall 의 값을 기준으로 공유메모리를 마련한다.

Oracle 11g 의 경우에는 POSIX 규격의 공유 메모리를 사용하기도 하고 System V IPC 규격의 공유 메모리를 설정에 따라서 사용하게 된다. AMM 기능은 POSIX 규격의 공유 메모리를, 그래서 /dev/shm 을 사용하며 이 크기에 따라서 Oracle 의 SGA+PGA 가 결정된다. 만일 AMM 기능을 사용하지 않을 경우에는 System V IPC 를 이용해야하기 때문에 커널 파라메터인 vm.shmmax, vm.shmall 값에 따라서 SGA 크기가 결정된다.

AMM 기능을 사용하면 HugePage 를 사용할 수 없다라고 하는데, 이는 당연한 것으로 HugePage 는 System V IPC 공유 메모리 인프라로 AMM 은 POSIX 규격의 공유 메모리 인프라를 사용하기 때문에 서로 호환이 될 수가 없는 것이다.

HugePage 는 System V IPC 의 공유 메모리를 구성하는 방법중에 하나로 기존의 4k 크기의 페이지를 2MB 크기의 페이지로 나뉘어진 공유 메모리를 사용하게 된다.

 

XFS 마운트 옵션.

XFS 파일 시스템은 요즘에 들어서 많이 사용되는 파일 시스템입니다. SGI 회사에서 개발한 것으로 대용량 파일 시스템으로 특화되어 있습니다. 최근들어 Big Data 가 대두되면서 스토리지 용량이 대용량화 되면서 XFS 가 떠오르는데, CentOS 7 배포판은 기본 파일시스템으로 XFS 가 되었습니다.

XFS 는 옵션들이 많이 있는데, 보통 대용량으로 많이 사용할 경우에 다음과 같은 옵션을 주로 많이 사용합니다.

 

[번역] 5.6과 5.7 사이의 MySQL 기본 설정 변경.

이 글은 다음의 글을 번역한 것입니다. 전문 번역자가 아니기에 오류가 있음을 미리 밝힙니다.
https://www.percona.com/blog/2016/09/14/mysql-default-configuration-changes-between-5-6-and-5-7/

이 블로그에서, 우리는 MySQL 5.6 과 5.7 사이에 기본 설정값의 차이에 대해 논의할 것이다.

MySQL 5.7 은 여러분이 기대했던 다양한 새로운 기능이 추가되었다. 하지만, 현재 변수들 또한 알게모르게 변화가 있었다. MySQL 5.7은 5.6으로부터 거의 40개의 기본값이 변경되었다. 어떤 바뀐값들은 여러분의 서버 성능에 아주 크게 영향을 줄 것이고 어떤것은 알지도 모르체 넘어갈 거다. 나는 각각의 변화가 무엇이고 어떤 의미인지를 살펴볼 것이다.

sync_binlog 와 같은 값들은 여러분의 서버에 아주 큰 영향을 줄 수 있다. 내 동료는, Roel Van de Paar, 다른 블로그 글을 통해서 아주 상세하게 sync_binlog의 영향을 깊게 다뤘다. Sync_binlog 는 어떻게 MySQL이 binlog 를 디스크로 플러시(flush)하는지를 제어한다. 새로운 값 1은 MySQL에게 커밋(Commit) 하는 동안 모든 트랜잭션들을 디스크로 쓰도록 강제한다. 이전에는 binlog 를 플러싱하도록 강제하지 못했었고 OS가 binlog를 플러시하는 시점을 결정하는걸 그져 신뢰해야만 했다.(OS 가 binlog 를 플러시하도록 내버려뒀다.)
https://www.percona.com/blog/2016/06/03/binary-logs-make-mysql-5-7-slower-than-5-6/

Variables5.6.295.7.11
sync_binlog01

퍼포먼스 스키마 변수들은 유용하지 않은것처럼 보이지만, 많은 것들이 기본값이 -1 이다. MySQL은 자동적으로 조정되어지는 변수들을 호출하는데 이 표기법을 사용한다. 오직 performance_schema_max_file_classes 만이 (자동으로) 조정되지 않고 바뀐다. 이것은 퍼포먼스 스키마에서 사용되어지는 파일 명령어들의 숫자다. 이것은 당신이 바꿀 필요가 없는 값이다.

Variables5.6.295.7.11
performance_schema_accounts_size100-1
performance_schema_hosts_size100-1
performance_schema_max_cond_instances3504-1
performance_schema_max_file_classes5080
performance_schema_max_file_instances7693-1
performance_schema_max_mutex_instances15906-1
performance_schema_max_rwlock_instances9102-1
performance_schema_max_socket_instances322-1
performance_schema_max_statement_classes168-1
performance_schema_max_table_handles4000-1
performance_schema_max_table_instances12500-1
performance_schema_max_thread_instances402-1
performance_schema_setup_actors_size100-1
performance_schema_setup_objects_size100-1
performance_schema_users_size100-1

optimizer_switchsql_mode 변수들은 각각 활성화될수도 있고 약간 다른 행동을 유도하게할 수도 있다. MySQL 5.7 에서는 민감도와 보안이 향상시키는데 플래그를 두가지 변수값을 활용할 수 있다.(활성화하거나 다른행동을 하게하도록 값을 지정하는 행위) 이것은 추가적으로 옵티마이저에게(Optimizer) 여러분들의 쿼리가 정확하게 해석되도록 결정하는데 좀더 효율성을 제공한다.

optimzer_switch 에 추가된 세개의 플래그들, 모두 MySQL 5.6 에 존재하며, 옵티마이저의 효율성을 높이기위한 목적으로 MySQL 5.7의 기본값으로 설정되었다. duplicateweedout=on, condition_fanout_filter=on 그리고 derived_merge=on. duplicateweedout 은 옵티 마이저의 세미 조인 구체화 전략의 일부입니다. condition_fanout_filter 은 조건 필터링 사용을 제어하고 derived_merge은 derived 테이블의 머지를 제어하고 뷰를 외부쿼리 블럭으로 제어한다.

https://dev.mysql.com/doc/refman/5.7/en/switchable-optimizations.html

http://www.chriscalender.com/tag/condition_fanout_filter/

(위 설정들을) SQL mode 에 추가해도 직접적으로 성능에 영향을 주지 않지만 성능을 높일수 있는 쿼리 작성법을 개선해준다. 몇몇 주목할만한 변화로 select … group by 문에서 모든 필드를 요구하려면 SUM과 같은 함수를 사용하여 집계하거나 group by 절에 넣어야한다. MySQL은 그룹화해야 한다고 가정하지 않으며, 필드가 없는 경우 오류를 발생시킨다. Strict_trans_tables 는 트랜잭션 테이블과 함께 사용되는지에 따라 다른 효과를 발생시킵니다.

명령문은 그것이 유효하지 않거나 데이터 변경을 위한 명령문에서 값이 누락된다면 트랜잭션 테이블은 롤백되었었다. 트랜잭션 엔진을 사용하지 않는 테이블에서 MySQL은 유효하지 않은 데이터가 발생한 레코드에 의존해 행동한다. 첫번째 row 라면 트랜잭션 엔진의 동작과 똑같이 동작하진다. 만일 그렇지 않다면 유효하지 않은 값은 가장 근사한 유효한 값 혹은 컬럼의 기본값으로 변경되어진다. 경고는 발생되지만 데이터는 insert 된다.

Variables5.6.295.7.11
optimizer_switchindex_merge=on
index_merge_union=on
index_merge_sort_union=on
index_merge_intersection=on
engine_condition_pushdown=on
index_condition_pushdown=on
mrr=on,mrr_cost_based=on
block_nested_loop=on
batched_key_access=off
materialization=on, semijoin=on
loosescan=on, firstmatch=on
subquery_materialization_cost_based=on
use_index_extensions=on
index_merge=on
index_merge_union=on
index_merge_sort_union=on
index_merge_intersection=on
engine_condition_pushdown=on
index_condition_pushdown=on
mrr=on
mrr_cost_based=on
block_nested_loop=on
batched_key_access=off
materialization=on
semijoin=on
loosescan=on
firstmatch=on
duplicateweedout=on
subquery_materialization_cost_based=on
use_index_extensions=on
condition_fanout_filter=on
derived_merge=on
sql_modeNO_ENGINE_SUBSTITUTIONONLY_FULL_GROUP_BY
STRICT_TRANS_TABLES
NO_ZERO_IN_DATE
NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO
NO_AUTO_CREATE_USER
NO_ENGINE_SUBSTITUTION

binlog 와 관련해 몇가지 변수가 변경되었다. MySQL 5.7 에 binlog_error_action가 업데이트 됐는데, binlog 를 쓰는중에 오류가 있다면 서버는 중단된다. 이런 일은 흔하지 않지만, 이런일이 발생하면 여러분의 애플리케이션과 리플리케이션에 큰 피해를 발생시키고 그것이 고쳐질때까지 서버는 그 어떤 추가적인 트랜잭션도 실행하지 않는다.

binlog 의 기본 포맷도 이전의 statement 대신에 ROW 로 변경되었다. Statement 는 로그에 적은 데이터를 쓴다. 하지만 많은 명령문들이, update … order by rand()을 포함해, 정확하게 복제되어지지 않았었다. 이러한 비결정적인 명령문은(non-deterministic statements) 마스터와 슬레이브에서 서로 다른 결과셋을 가진다. ROW 포맷으로 변화는 좀 더 많은 데이터를 binlog 에 쓰지만, 정보가 정확하고 올바른 복제를 보장한다.

MySQL은 전통적인 binlog 포지션 방식대신에 GTID 를 사용하는 리플리케이션에 초점을 맞추기 시작했다. MySQL이 시작하거나 재시작할때, 이전에 사용된 GTID 의 목록을 생성해야 한다. 만일 binlog_gtid_simple_recovery가 OFF거나 FALSE 라면 서버는 새로운 binlog 로 시작하고 previous_gtids_log_event 대해서 binlog 파일 검색을 거꾸로 반복한다. 만일 이것이 ON, True 라면 서버는 최신과 가장 오래된 binlog 파일을 검토하고 사용된 gtid 를 계산한다. Binlog_gtid_simple_recovery는 binlogs 를 좀 더 빠르게 파악하게 해주며, 특히 GTID 이벤트가 없는 아주 많은 수의 바이너리 로그를 빠르게 파악해준다. 하지만, 특별한 경우에 이것은 gtid_executedgtid_purged 가 잘못 채워질 수도 있다. 이것은 오직 MySQL 5.7.5 나 그 이후버전에 의해서 새로운 binlog 가 생성되어질때 발생하거나 SET GTID_PURGED 명령문이 5.7.7 보다 이전버전에서 실행될때 발생된다.

5.7에서 업데이트된 또다른 리플리케이션 기반 변수는 slave_net_timeout 이다. 이것은 60s 미만이여야 한다. 이전 버전의 리플리케이션 쓰레드는 적어도 한 시간에 문제가 발생될때까지 마스터로 연결이 깨졌다고 판단하지 않았다. 이 변화는 연결에 문제가 있다는 것을 좀더 빠르게 알려주고 여러분이 이슈를 알기전에 복제가 크게 뒤쳐지지 않도록 해준다.

Variables5.6.295.7.11
binlog_error_actionIGNORE_ERRORABORT_SERVER
binlog_formatSTATEMENTROW
binlog_gtid_simple_recoveryOFFON
slave_net_timeout360060

InnoDB 버퍼 풀 변경은 서버 시작 및 중지 시간에 영향을 준다.

innodb_buffer_pool_dump_at_shutdowninnodb_buffer_pool_load_at_startup 는 서버를 ‘warm up’ 하지 못하도록 함께 쓰인다. 이름처럼, 이것은 셧다운시에 버퍼풀 덤프를 유발하고 시작시에는 로드 된다. 비록 여러분이 100Gb 용량의 버퍼풀을 가지고 있어도, 쓰여진 데이터는 훨씬 작기 때문에 버퍼풀 용량과 똑같은 디스크 용량을 확보할 필요는 없다. 디스크에 쓰여지는 것은 실제 데이터, 테이블공간 과 페이지ID 를 찾는데 필요한 정보만이다.

Variables5.6.295.7.11
innodb_buffer_pool_dump_at_shutdownOFFON
innodb_buffer_pool_load_at_startupOFFON

이제 MySQL 은 5.6과 그 이전 버전에 InnoDB 에 구현된 몇가지 옵션들을 기본값으로 만들었다. InnoDB 의 체크섬 알고리즘을 innodb 에서 crc32로 개선했는데, 이는 최근 Intel CPU 의 하드웨어 가속 기능을 활용할 수 있는 장점이 있다.

Barracuda 파일 포맷은 5.5 이후부터 활용되기 시작해 5.6 에서 많은 개선이 이루어졌으며 이제 5.7 에서는 기본값이 되었다. Barracuda 포맷은 압축과 동적 로우 포맷을 사용할 수 있다. 내 동료 Alexey 는 압축된 포맷의 사용과 최적화 때 그가 본 결과에 대해서 글을 썼다. https://www.percona.com/blog/2008/04/23/real-life-use-case-for-barracuda-innodb-file-format/

innodb_large_prefix 는 기본값이 ‘on’ 이며 Barracuda 파일 포맷과 조합해서 사용할 경우에 좀 더 큰 index key prefix 를(3072 bytes보다 큰) 생성할 수 있다. 이것은 아주 큰 텍스트 필드의 인덱스에서 장점이 된다. 만약 이것이 ‘off’ 라면, 로우 포맷은 동적이거나 압축이 되지 않으며, 767 bytes 보다 큰 index prefix는 자동으로 잘린다. MySQL은 5.7.6에서 더 큰 InnoDB 페이지 크기 (32k 및 64k)를 도입했다.

MySQL 5.7 은 innodb_log_buffer_size 값이 충분히 커졌다. InnoDB 는 바이네리 로그에 디스크로 쓰는 동안에 로그 트랜잭션를 위한 로그 버퍼를 사용한다. 증가된 크기는 로그를 디스크로 플러쉬하는 빈도를 줄이고, I/O를 줄이며, 커밋하기 전에 디스크에 기록 할 필요없이 로그에보다 큰 트랜잭션을 저장할 수 있다.

MySQL 5.7 은 MySQL 5.5 에서 thread contention 을 줄이기 위해서 InnoDB의 퍼지 연산들을 백그라운드 쓰레드로 옮겼다. 최신 버전에서 퍼지 쓰레드는 4개로 기본값이 늘었지만 1에서 32쓰레드까지 언제든지 변경할 수 있다.

MySQL 5.7 은 이제 innodb_strict_mode 가 기본값이 됐고 몇몇 경고들은 오류로 바뀌었다. create table, alter table, create index, optimize table 명령문에서 문법 오류는 에러를 발생시키고 실행전에 사용자가 수정해야만 한다. 또 insert 나 update 구문이 선택한 페이지 크기에 비해 아주 큰 레코드 때문에 실패하지 않도록 레코드 크기를 체크할 수 있다.

Variables5.6.295.7.11
innodb_checksum_algorithminnodbcrc32
innodb_file_formatAntelopeBarracuda
innodb_file_format_maxAntelopeBarracuda
innodb_large_prefixOFFON
innodb_log_buffer_size838860816777216
innodb_purge_threads14
innodb_strict_modeOFFON

MySQL 은 equality 범위를 평가할때 옵티마이저가 index로 넘어가는 횟수를 증가시켰다. 만약 옵티마이져가 eq_range_index_dive_limit 보다 더 많이 index로 넘어가길 원한다면, MySQL 5.7 에서 기본값 200, index 통계를 사용한다. 여러분은 이것을 0부터, 인엑스 다이빙 제한, 4294967295 까지 수정할 수 있다. 이것은 테이블 통계가 무작위 샘플의 카디널리티를 기반으로 하기 때문에 쿼리 성능에 큰 영향을 줄 수 있다. 이로 인해 최적화 프로그램은 인덱스 다이빙보다 검토 할 훨씬 많은 행 집합을 평가하고, 옵티마이 저가 쿼리를 실행하기 위해 선택한 방법을 변경하게 할 수 있다.

MySQL 5.7 에서 log_warnings 은 사라졌다. 대신 log_error_verbosity 를 사용된다. 기본값은 3이고 에러로그에 errors, warnings, notes 가 기록된다. 여러분은 이것을 1(errors 만) 이나 2(errors 와 warnings) 로 변경할 수 있다. 에러 로그를 참조할때, verbosity 는 좋은 것이다. 하지만 이것은 error 로깅을 위해서 디스크 공간과 I/O를 증가 시킨다.

table_open_cache_instances 는 MySQL 5.7.8 부터 변경 되었다. instance 의 숫자는 1에서 16까지 증가된다. 이것은 두가지 장점이 있는데, DML 구문의 contention 을 줄여주고, 캐쉬 접근의 세분화 된다. instance 수를 증가시킴으로써, DML 구문은 전체 캐쉬가 아닌 하나의 instance 만 잠글수 있다. 한가지 중요한 사실은 DDL 구문은 여전히 전체 캐쉬에 잠금(lock)를 필요로 한다. 시스템에서 많은 수의 세션이 캐쉬에 접근하면 성능은 증가 된다.

Variables5.6.295.7.11
eq_range_index_dive_limit10200
log_warnings12
table_open_cache_instances116

5.7 에서 기본값에 많은 변경이 있다. 하지만 이렇게 많은 옵션들은 오랫동안 존재해왔고 사용자에게 친숙해야 한다. 많은 사람들이 이 변수들을 사용했고 그들은 MySQL을 앞으로 나가게 하는 가장 좋은 방법이다. 하지만 기억해야 할 것은, 여러분은 여전히 이러한 변수들을 편집할 수 있고 서버가 여러분의 데이터를 위해 최고 동작하도록 그들을 설정할 수 있다.